EZGPIB

" EZGPIB

File Edit Search Program GPIB debugwindow Help About

Source Code

1 Program Test_8; // The same as #

2 =

3 const filenawe='C:\EZGPIBData\TestFile.Txt';

4

5 var s:string; // Declare a va

6 ch:char; // Declare a ck

- X
< | >

Compiler & Debug Messages

Succesfully compiléd

Qutput Console
Date -/ Time GPIB raw data GPIE data stripped ~
30.07.2006 11:05:44 NDCV-0000.02E+0 —-0000.02E+0 -
M
< | ?
1:1 Running C:\Programme\Borland|Delphi6\Projects\EZGPIB\ Test_08.488

A GPIB, RS232 and TCP/IP
Data acquisition Tool

Brought to you by
Ulrich Bangert
diéib@ulrich-bangert.de

Revision date: 05/01/2021

mailto:df6jb@ulrich-bangert.de

this page intentionally left blank

EZGPIB2_eng
EZGPIB Manual Rev: 2.00
Page 1/52

Index

I L 2 (@ 11U @ 1 1 3
1.1 OBITUARY FOR OM ULI BANGERT DFGBJB......cooiiiiiiiiii e 6
O A € e | =) PR 6
2 USER GUIDEuuuuiiiiiiiitiiiiiiiiiiii s assnsnnnnnnns 7
2 SN 7 2 N R = €] | 7
2 I R VAV o 74 1 | = 1 10
2.1.2 WRhAt EZGPIB IS NMOL.....uuuuiiiiiiiiiiiiiiiiiiiiiii bbb ssnssbssebnnnnes 10
N © T N 3 = €1 = 1 = 11
2.2.1 Loading and ruNNING SCHPTS.uuuuuuuuituituiiiiaiiiteee bbb eeennnnneennnnnnne 11
2.2.2 DEDUQGGING SCIIPES. ...ttt nnes 12
2.2.2.1 Console WINAOW DEDUQG PrINTS.....ccoiuiiiiiiiiiee ittt et e e sbr e e e sbneeeeanes 12
2.2.2.2 Bre@KPOINTS (F5) ..eiiiiiiiieiiiiiee ittt ettt e et e e e st e e e st e e e e e br e e e abr e e e e abaeeeeane 13
2.2.2.3 Single Stepping (F7, F8 and F5+F9) ...ttt e e e e e e e e e s nnneees 15
2.2.3 We write a real data acquisition appliCation..............oouuuiiiiiiiieeeiiieeccee e 16
2.2.4 Data acquisition USING SEIal POITS........uuuuuuuuiiiiiiiiiiiiiiiiiiiiii bbb eeeeeeeaenne 24
2.3 WHAT THE EXAMPLES DO ...uuuuuuuuuuuuuuuunuunnssnsssnssnssnnnnns 27
2.4 SOME NEW FEATURES ...uuuuuuuuuuuuuussusnnnsnsnssssssssssnssnnnnns 28
2.4. 1 MU TRFEATING ...ttt 28
S 1= 1= 7C 772 T I ST o] o o] o (R 29
P2 B VA IS ANC Y220 I 1IN ST U o] oo g RN 29
2.4.3.1 VISA COMMUNICALION DEMIO.......uiiiiiiieeiiiiiie it e ettt e e e e et e e e e e s e aasbe et e e e e e s e asnbreeeeaaeesaanne 30
2.4.4 Prologix LAN GPIB INterface SUPPOITuuuuuuumiiiiiiiiiiiiiiiiiiiiiiiiiiieiineieeeeneneeneeeeanes 31
2.4.5 EOI DeteCtion CONfIQUIATION.uuuueiiitieiiiiiitiieii bbb eeeeeeeeeeenne 32
2.4.6 File MeNU ENNANCEMENLSuuuuiiiiiiiiiiiiiiiiiiiiiiiiieaeea s sssaesssessssssnnnssssssnnnnes 33
2.4.7 Implicit Variable ‘UserFileNamMe’ccooiiiiiiiii e 34
2.4.8 Single Step and Breakpoint SUPPOITuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiieeeeneeeeeeeeeenes 35
2.4.9 GPIB Address Parameter and Sub Address SUPPOItcceviieeiiiiiiiiiiiie e 35
3 EZGPIB FUNCTIONS AND PROCEDURES........ccco oo, 37
3.1 BUS SETUP AND CONTROL (PROLOGIX AND DLL)....ccoviiiiiiii i, 37
3.1.1 Query Bus and Adapter Parametersccoooeiiiiieiieieeeeeeeeeeeeeee e 37
3.1.2 Set Bus and Adapter Parameters............uuuiiiiiieiiiieeiiiie e e et e et e e e e e aannes 39
3.2 PROGRAM FLOW FUNCTIONS ...iiitiieeeee ettt a e 40
3.3 PROLOGIX ADAPTER SETUP ..iiiiiiiie ettt e 40
3.4 INSTRUMENT CONTROL ..eieieeeieeeeee e e e e et et et e aaaaaaaaaaaaans 41
341 REAA frOM BUS ... 41
G VAV 11 (=38 (o N = U PSS 42
3.5 SERIAL PORT COMMUNICATIONS ...itttuuietiutuneeseetuneesesneasestnaeseesnnseseesnseesessnnaasessnsesessnnnes 42
3.5.1 INitial COM POIt SELUPD ...oeiieeiiiiiiie et e e e ettt a e e e e e e e eeaean e e e e eaeeennees 42
3.5.2 Read from Serial COM POIouiiiiii e e e e 42
3.5.3 WIILE 10 SEIIAI POI....eiiiiiii it e e et e e e e e e e e aar e e eaaes 42
3.5.4 Get/Set Serial Port Control PiNSoooiiiiiiii e e e e eeeees 42
3.6 STRING FUNCTIONS .. .ciii i ittt e aaaaaaaaens 43
3.6.1 NUMETIC tO StriNG CONVEISIONuuuuiiuiiiiiiiiiiiiiiiiaaiibiiaeeeb bbb ebbbebneneenenannnes 43
3.6.2 SHrNG 10 NUMEKIC «..eeei ettt ettt e e e e e e e ettt e e e e e e e e eeneeann e e eeeaeeennees 43
IS TRC T D - (< (o S 41T SRR 44
G R 1= T = | SRS 44

Revision date: 05/01/2021

EZGPIB2_eng
EZGPIB Manual Rev: 2.00
Page 2/52
TR A 11 = 1 [RPN 44
T R 1= T o T= - | 44
I A = =T Vo I (o T 1 TR 44
T AR T AV 2 ¢ (< (o 1 T L= TR 45
3.8 KEYBOARD INPUT Lottt ittt ee ettt et e et et e e e e e e e e e e e e e e e s et e e e e e an e an e an et ssnasnss 45
RG2S T I = I N 45
TR O I N i = 1 =S PUPRN 46
G 70 5 I 0 TR 46
I I Y STt = I V] =0 1O L P 46
R 700 2 R I 7= o T AV o [1 2SRRI 46
IR 2 o T o Al 1 TR 46
IR 2 T I ! 5 TR 46
IR T T Y = 0 = 2T 47
3.14 OUTPUT TO CONSOLE SCREEN ...u.iituiitineeetieeitieeeeteeetees e e st e esteestaaesstesetaeesstaesstnaeranaeens 47
3.14.1 Writing INfOrMation 10 SCIEEN......ccoo e 47
3.14.2 Manipulating SCrEENcooeeeeeeeeeeeeee e 47
I LRV I = U N (o (0] Y 1 1 22T 48
G 701 0t R o T o S PPUPRRPNS 48
G TS T O [11 < 48
I K TRC T = L= = o [T 48
I ST S VL 1 (R 48
4 SOFTWARE REVISION HISTORY .oeiiiiiiiiiii ettt e et e e e et e s e e 49
5 DOCUMENT REVISION HISTORY ..ouiii ettt e et e e 52

Revision date: 05/01/2021

EZGPIB Manual

EZGPIB2_eng
Rev: 2.00
Page 3/52

1 Introduction

| have been using GPIB based instruments since the time when | was a young student of
physics at the RUHR-UNIVERSITAET-BOCHUM (the University at Bochum, Germany).

| had access to a TEKTRONIX 4051 which happened to be one of the first real computers that
you could put on your desk (at least if your desk was large enough). The 4051 rock looked like

shown in picture 1.

Picture 1

At its time the 4051 was a tremendous modern computer. While other computers used ASCII
text based terminals to communicate to their users the 4051 had a dazzling graphics screen
with a 1024x1024 resolution. It would be incorrect to talk about the ‘pixels’ of the screen
because it was not a television like screen displaying pixels. Instead, what you were looking at
was a really big storage tube as originally developed by TEKTRONIX for their stock of analogue

storage oscilloscopes.

This storage screen was ‘written’ by a beam of electrons which affected a phosphor layer to
constantly afterglow where the beam had impinged the layer. The horizontal and vertical
deflection plates for that electron beam were driven by two 10 bits D/A converters which made it
possible to focus the beam to any position of the screen with the mentioned resolution.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 4/52

Imagine a full blown graphics computer 10 years before IBM even planned to construct what we
now call a pc and even many years before the first ‘thome computers’ were to appear on the
scene. Wow!

In fact, the 4051 was generally considered a so revolutionary concept that it was used to play
the part of the ‘computer’ in science fiction movies!

Picture 2 is a promotional picture for one of the earlier ‘Battlestar Galactica” movies. That was
not what we call ‘product placement’ today! They really liked this thing for its futuristic design!

Picture 2

In these early days of computing, BASIC was the language of choice when it came to data
acquisition and companies like Hewlett & Packard (the inventors of HPIB, the ‘Hewlett &
Packard Interface Bus’, a term that was superseded by the more neutral GPIB ‘General
Purpose Interface Bus’ by their competitors) and TEKTRONIX had the necessary bus handling
commands as integral parts of their BASIC interpreters.
GPIB handling was easy! While a

100 Print "Test”
statement would output the string “Test” to the screen, the statement

100 Print @13:”Test”

would send the string “Test” to the device with address 13 on the GPIB.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 5/52

Similar to that a
110 Input @4:A$

statement would not read the keyboard, but instead try to read an answer from GPIB device 4
into the string A$. While the BASIC language has its limitations, writing data acquisition software
has never been easier than that. The above examples apply to the 4051. HP’s BASIC stuff was
a bit different but on the same level of ease.

After university the first data acquisition systems for air pollution measurements that | had to
deal with were based on GPIB equipped devices. Then there was a long pause in which 1 still
had to do with data acquisition but no more GPIB based.

A lot of electronic measurement devices that | bought as part of my hobby as a radio amateur
had a GPIB interface but there was no real need for me to use it. Things changed when |
became interested into oscillator stability tests where data recording over hours, days or even
weeks is part of the business. In this context | used ISA GPIB cards from CEC, KEITHLEY,
NATIONAL INSTRUMENTS and INES (a Germany based company) and | wrote data
acquisition software using LABVIEW, Borland’s TURBO PASCAL and later using DELPHI.

While there were basically only 2 different GPIB controller chips on the market each
manufacturer would give his cards a different address range, DMA range and interrupt range
making them as incompatible among each other as possible. For that reason you have to use
the drivers and DLLs specific for a certain manufacturer. And since the drivers and DLLs are not
identical in terms of functionality and syntax to talk to them | had to change my sources with
every change in GPIB hardware. When | had to exchange my last ISA based computer against
one that featured only PCI slots | had to deal with the problem what to do now with my GPIB
based measurements. Should | pay again hundreds of dollars for a PCI GPIB card and again
receive new drivers and DLLs? In this situation | came over the GPIB-USB adapter from
PROLOGIX, available from http://www.prologix.biz which is shown in picture 3.

This cute little device uses a FTDI chip for USB to RS232 translation. That means that you
install a simple FTDI driver available free from their web pages. This driver allocates a virtual
RS232 port and you may use any software from ready to go terminal programs up to self-written
stuff to communicate over this virtual RS232 with the ATMEL AVR microcontroller on the
Prologix Adapter board.

This microcontroller in turn features a firmware that works as kind of interpreter for serial
commands into GPIB actions. It has an easy to learn command syntax and the complete issue
of GPIB programming is reduced to handling strings on a serial port.

While this is a worth to mention reduction in complexity concerning GPIB programming, it may
still leave a problem for the non-programmer to get a GPIB measurement up and running. In
addition the simple serial syntax lacks some higher level action commands that | would have
liked to have available for my own programming needs. That is why | started to program me my
own working environment for GPIB programming. You may understand it as an IDE that is
made especially for GPIB and RS232 data acquisition in conjunction with the cheap Prologix
adapter. | called it EZGPIB. This paper is to introduce you to EZGPIB.

Note that also some tools for receiving screen plots from scopes and analyzers via the Prologix

adapter are available for free. Google a bit for the American callsign KE5FX or search for the
name “John Miles” in the web.

Revision date: 05/01/2021

http://www.prologix.biz/

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 6/52

The actual version of Prologix GPIB-USB adapter looks like shown in Picture 4 and sells for
approx. $150,-- which it is well worth due to the improvements against its predecessors. Alone
the fact that it can safely be screwed to an IEEE-488 terminal and updated via the USB port is
worth every cent of it.

OG\“S\;\\‘(e
=
<

?c,‘?®

Picture 4
1.1 Obituary for OM Uli Bangert DF6JB

Unfortunately the sad news is, that Ulrich Bangert, the creator of EZGPIB and many other
extremely useful documentations and HAM-Radio gear like EasyFax passed away in June
2014, aged 59. His wife Ina passed away in May 2012.

Long time ago, | had several enjoyable contacts with him regarding his EasyFax converter,
which | built and used extensively at that time. Finally he agreed to give me a copy of the
complete source code of his project, in order to make my own software modifications and
extensions for this famous converter.

| do hope that with this updated revision of the document | am able to contribute a little bit to his
excellent work. | also translated this document into German language in order to make it easier
for all German users which are not so fluent in English language ;-)).

Kater Karlo

1.2 EZGPIB2.EXE

My screen is a HiRes type and my old eyes are weak. So | started some tinkering inside the
resource section of the executable EZGPIB.EXE by use of the famous freeware resource editor
‘Resource Hacker’ by Angus Johnson in order to improve the situation.

The executable EZGPIB2.EXE, which came along with this documentation, incorporates the
following changes (hopefully they will be considered as improvements ;-))

» Initial window size after startup is now 1024x768

* Font size of all windows changed from 11 pix. to 16 pix. for better readability

* Font of Console Window changed to ‘Courier New’ for better readability

» About Box rearranged and resized as it was not readable (at least at my pc ;-))

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 7/52

2 User Guide
2.1 Starting EZGPIB

EZGPIB consists of a single executable file EZGPIB.EXE, the INOUT.DLL, some programming
examples and this help file. EZGPIB runs under WIN 2000, XP, 7 and hopefully under newer
versions too. Older versions have not been tested but are very likely to produce trouble.

On the old Prologix board, set DIP switches 1-5 to OFF and switch 6 to ON. That configures it
as a GPIB bus controller, with a bus address of “0”. The presence of a new (switchless)
controller is detected automatically by EZGPIB and the necessary measures are taken.

When starting EZGPIB.EXE, the software will try to detect a Prologix adapter connected to your
system. In order to do so, all serial ports of your system are enumerated and checked for the
presence of a FTDI or CH340 chip. If a FTDI or CH340 chip is detected, the software checks for
an asserted CTS signal. If true, it sends a test string and a ‘++ver’ cmd, to test whether a
Prologix adapter answers with a version string containing the substring ‘USB-GPIB’ or not.

If no Prologix adapter is found, EZGPIB will try to detect whether a DLL hamed GPIB32.DLL is
available on the PC, because that may indicate that the pc is equipped with a plugin GPIB
adapter card. If the DLL is available, it is loaded and used to detect any GPIB adapter that is
connected to the PC. That may be either a PCl-board or something different.

G - [BX]|

Source Code

1 Program New;

2

3 begin:

4 // place your code here
5 end.

Compiler & Debug Messages

Output Console

< >
1:1 Editor

Picture 5

No matter how your PC is equipped, you are first confronted with EZGPIB’s main window
like shown above.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 8/52

The next thing that | suggest to do is to open the GPIB debug window from the main menu.
This will assist you in understanding how the Prologix adapter or another GPIB adapter was
found or why it was not found. When a Prologix adapter is connected to my system the debug
window looks like this after starting EZGPIB:

@ Debug Messages E]@ g|
.

COM1 wa=z detected on your sy=tem

COMS wa=z detected on your sy=tem

A FTDI device was detected on that port.

COMS i= perhaps connected to an Prologiz GPIE interface
COM3 waz detected on your system

COM4 was detected on your sy=tem

Checling Comb for Prologix GPIE interface

Port has been opened

Send ++auto 0 command

Send ++ver command

Received answer: Prologiz GFIB-USE Controller wersion 4.50

Found "GPIB-USB" in answer. Prologix GFIE interface detected

Switchless =oftware ver=zion 4 X detected

Send ++mode 1 command to make it the system controller

Send ++auto 0 command again.

A4 Prologiz GPIB-USE Controller wersion 4.50 has been found on Comb of vour svsten.
The Prologix GPIB interface will be used for all IEEE-488 bus activities.

£ i

Picture 6

Again, depending on your system the information may be different from the one displayed
above.

Notel: For a number of Prologix compatible adapters like AR488, it might happen that the CTS
signal is NOT asserted by the USB interface chip. In this case, the best solution is to connect
the CTS pin of the interface chip constantly to GND in order to make communication with
EZGPIB possible! | strongly discourage the use of any CTS-patched versions of EZGPIB.

Note2: Even if a Prologix adapter is connected correctly to your system and a number of GPIB
devices are connected correctly to the Prologix adapter, you may encounter the situation that
the controller is not detected when starting EZGPIB.

In most cases this phenomenon is due to the following reason:

The Prologix adapter answers to serial commands only when it is able to fully control the GPIB
bus. It can only fully control the bus when enough devices on the bus are switched on!

If you have connected more than one instrument to the GPIB, you should switch on at least 2/3
of all devices connected to the bus even if you want to talk only to a single device. This is not a
specific Prologix problem but has to do with the GPIB specifications in general.

The situation that the board cannot fully control the bus is also easily identified by the leds on
the Prologix adapter: If the TALK led beneath the power led stays constantly on after power up,
this is an indicator for such a problem. If everything is ok, then the LISTEN led is constantly on
at this time.

On http://www.transera.com/htbasic/tutgpib.html under ‘Physical characteristics’ you can read
more on that.

Revision date: 05/01/2021

http://www.transera.com/htbasic/tutgpib.html

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 9/52

Be prepared that the very easy to use high level commands “EZGPIB_BusWriteData” and
“EZGPIB_BusWaitForData” will do the job for most of what you are going to do.

Lots of other commands are to be found in EZGPIB just because they are available for the
Prologix controller ;-)).

Two things that you need to know, but that are not so evident:

1) The main window is divided into three sections and you may individually set the size of
these sections. Move the mouse slowly from one section to the next one until the cursor
changes into two parallel lines. Press the mouse button and move the section border in
the direction that you like.

2) EZGPIB stores programs in standard text files, but gives them the extension ”.488” to
make them different from other text files.

On startup EZGPIB will look for the existence of a file named ‘standard.488’.

If a file of that name is found in EZGPIB’s directory it will be loaded automatically. That
feature has been built in for the case that you work with the same setup on a regular
base.

If you choose New from the file menu you load in reality a file named ‘new.488’. Store
everything that you want to see in the beginning of a new project into ‘new.488’ and it will
there when you need it ;-))

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 10/52

2.1.1 What EZGPIB is

1) EZGPIB is an IDE with a full blown editor for writing and debugging PASCAL like source
code. PASCAL is an easy to learn structured programming language. Even if you are a
non-programmer, you will experience that the examples that come together with EZGPIB
give you an easy to understand introduction into what it is all about.

2) EZGPIB is a compiler for the PASCAL like program source that you have written using the
editor. The most prominent difference to a standard PASCAL compiler is the fact, that a
lot of ready to go functions and procedures have been added to the standard language.
The things that have been added are (hopefully) everything that you need for successful
GPIB data acquisition in conjunction with the Prologix adapter and for data processing.
You don’t need to hassle with low level serial communication functions, but can instead
use high level functions as

BusWaitForData(Device:LonglInt; ForWhat:string; MaxWait:Double):Boolean;

Which means as much as: Wait <MaxWait> seconds for a GPIB message coming from
Bus device <Device>. If the answer arrives within the timeout of <MaxWait> seconds,
then put the message into the string <ForWhat> and return ‘“True’ as the function value.
Otherwise leave <ForWhat> empty and return “False” as the function value.

3) EZGPIB is the runtime environment for the programs that you have written with the editor
and translated with the compiler. EZGPIB does not produce standalone applications.
EZGPIB applications can only be started from within EZGPIB. While this may seem as a
drawback to some of you, there are strong reasons for it that are beyond the scope of this
discussion. There is also a big advantage in EZGPIB being its own runtime environment:
The lower part of the main window is a text based output and input console and EZGPIB
has built in functions and procedures that make text based i/o via this console a snhap.
You don’t have to learn any Windows specific i/o techniques.

4) If the editor part and debug part of the main window bother you while executing a
program, you may start the program with the Run Console command. In this case editor
and debug part are minimized during program execution. File output of measured data,
which is perhaps the maost important thing that you are after, is extreme easy!

2.1.2 What EZGPIB is not

EZGPIB is a tool that helps you to communicate with your GPIB devices. However, it does
not know what the content of the communication needs to be, in order to get the expected
result. You will have to know!

You will need a certain understanding for what your devices expect to receive over the GPIB in
order perform a certain action or to send back a certain measurement result over the GPIB.

Usually this means that you need the complete device manual or at least the GPIB
programming part of it. Be warned that most manuals are not thought as introductory lessons
into GPIB programming. On the other hand, GPIB is one of the best introduced standards in the
world of electronics and you should have no difficulties to find everything that can be known
about GPIB in general on the web.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 11/52

2.2 Using EZGPIB
2.2.1 Loading and running Scripts
EZGPIB'’s File menu is very similar to what you know from other Windows based software. Use

the Open command to enter the File-Open dialogue and choose to load Test_01.488. Now your
main window should look like this:

@" EZGPIB Q@@

File Edit Search Program GPIB debugwindow Help About
Source Code
1 Program Test_1: // The famous 'Hello World' program
2 begin
3 ezgpib_ screenclear; // Clear output console screen
4 ezgpib_ screenvrite('Hello World'): /7 Make the output
5 end.
< >
Compiler & Debug Messages
OQutput Console
~
v
< >
1:1 Editor C:\Programme)\Borland\Delphié\Projects\EZGPIB\ Test_01.488

Picture 9

This is the famous ‘Hello World’ program that every programmer needs to do once in a new
programming environment. In the editor part of the window note that:

1) Some words are black in a bold font. These are reserved words of the PASCAL like
language that may not be used for a different purpose. You are not allowed to call a
program ‘begin’ because ‘begin’ is a reserved word indicating the start of a program,
function or procedure.

2) Some words are black in a standard font. These are constants that cannot be assigned
a specific group. In the example everything behind the ‘//’ is a comment and ‘Hello World’
is a text constant.

3) Some words are blue. These are names of programs, functions and procedures.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 12/52

Now use the Run Command of the Program menu to compile and execute this program.
The lower part of the main window should look like

AUNTIEIET C6 LML YIS Sty

Succesfully compiled
Succesfully Execute

Qutput Console
Hello World S

111 Editor C:\Programme\Borland\DelphisiProjects\ESGPIEY Test_01.488

Picture 10

Congratulations! You have compiled and executed your first EZGPIB program. It had nothing to
do with GPIB and this may give you the idea that you can use EZGPIB even for other quick and
dirty programming.

That does not necessarily mean that everything you do in EZGPIB must be quick and dirty!

The PASCAL language that is the foundation of EZGPIB, enforces you to write well-structured
stuff and you can handle even big problems and tasks with ease. EZGPIB is a true compiler and
you will find that EZGBIP based programs are real fast.

However, you will find out that most GPIB measurement applications written in EZGPIB are
quite small in terms of number of program lines. This is due to many available high level
functions.

2.2.2 Debugging Scripts

In the very unlikely event, that you will note permanent or occasional suspicious behavior of
your brand new script, EZGPIB provides some useful tools and strategies to deal with such
situations. Please note that everything which is mentioned under chapters 2.2.2.n was not
described in detail by the creator of the program, but is the result of ‘trial and error’ in the course
of creating my own programs! Use this information at your own risk ;-))

2.2.2.1 Console Window Debug Prints

As a very straightforward method of ‘hardcore’ debugging, | would strongly encourage the
reader to make extensive use of all routines, which are mentioned in chapter 3.14 of this
documentation.

By use of procedure EZGPIB_ScreenWriteLn and various string converting routines, you will
find an easy way to get information about what's going on with your program and variables
while your script is running!

Unfortunately the script engine does NOT support conditional compiling, therefore you cannot
use Turbo Pascal like definitions like {$DEFINE DEBUG} to get rid of your debug printouts.

Revision date: 05/01/2021

EZGPIB Manual

EZGPIB2_eng
Rev: 2.00
Page 13/52

2.2.2.2 Breakpoints (F5)

EZGIPB provides the possibility to insert breakpoints at any executable line of your script like
mentioned in chapter 2.4.8. Simply place the cursor the line of the ‘Source Code’ window,
where you would like to stop the execution flow and right click with your mouse or on the

mousepad. You will get a popup window showing you possible options:

@ s e = i) T
— e _—

File Edit Search Program Debug Messages Help About
Source Code

1 Program ScriptDebug; -

2

3 Var

4 count:integer;

5]

6 begin;

7 repeat

8 EZGPIB ScreenClear;

9

10 for count :=1 to 10 do

11 begin

1z | FZGPTR ScreenWrite('Tine ');

13 Toggle Breakpoint F5 |unt);

14

15 Cut Strg+X

16 Copy Strg+C

17 ¢ Paste Strg+V <
<[Delete Strg+Entf
(CRCRERC)] Compiler & Debug Messages

By pressing F5, you will place a breakpoint at the cursor line, which is then shown in red color:

& begin;

7 repeat

g EZGPIB_ScreenClear;

9

10 for count :=1 to 10 do

11 begin

12 EZGPIB ScreenWrite('Line ');
13 EZZPIB_ScreenWriteln (count);
14 EZGPIB Timesleep(0.2);
15 end;

16 until EzZGPIB_ KbdEKeyPressed;
17 end.

Of course you can place more than one breakpoint at a time on multiple lines of your script:

6 begin;

1 repeat

8 EZGPIB_ScreenClear;

9

10 for count :=1 to 10 do
11 begin

EZGPIB ScreenWrite('Line ');
13 EZGPIB_ ScreenWriteln (count);
EZGPIB Timesleep(0.2);

15 end;

16 until EzZGPIB_KRbdReyPressed;
17 end.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 14/52

If you run the script now by pressing F9, it is automatically halted at the first breakpoint and will
indicate that by inverting the line colors as shown here:

6 begin;
7 repeat
8 EZGPIB ScreenClear;
]
10 for count :=1 to 10 do
11 begin
12 EZGPIB_ ScreenWrite('Line ");
I 13 EZGPIB ScreenWriteln (count):
14 EZGPIB Timesleep(0.2);
| end; -
16 until EZGPIB_EbdEeyPressed;
17 end.
PR
S ERE) Compier & Debug Messages
Succesfully compiled

Qutput Console

Note, that as shown above, nothing has been Written to the ‘Output Console’ window so far,
which means, that a breakpoint halts execution at the specified line, but the line itself will
NOT have been EXECUTED, when the program is halted!

If you continue the script from the breakpoint by pressing F9, the display will change as shown:

& begin;
7 repeat
g EZGPIB_ ScreenClear;
£
10 for count :=1 to 10 do
11 begin
12 EZGPIB ScreenWrite ('Line ');
13 EZGPIB_ScreenWriteln (count) s
14 EZGPIB Timesleep (0.2);
15 end; N
16 until EZGPIE EKbdEeyPressed;
17 end. -
I <« |
SRR RE) Compier & Debug Messages
Succesfully compiled
Qutput Console
Line 1

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 15/52

You will note three things:

1) On the ‘Output Console’ the string ‘Line 1’ was printed, so lines 12 and 13 have been
executed.

2) The script is halted at line 14, but note that the sleep instruction has not been executed!

3) The first breakpoint is still active and will halt the program again in line 12 when you
continue execution with F9

Note, that key F5 has a toggle function. Breakpoints can be removed by bringing the cursor to
the corresponding line and pressing F5 again. If you have multiple breakpoints, you can even
do this while the running script is halted at another breakpoint.

If you toggle the breakpoint where the script is actually halted with F5, the line color will change
to blue to indicate that you are changing the actual halting point!

& begin;
7 repeat
8 EZGPIB_ScreenClear;
9
10 for count :=1 to 10 do
11 begin
12 EZGPIB ScreenWrite('Line ');
13 EZGPIB ScreenWriteln (count);
14 EZGPIB Timesleep(0.2);
15 end ; B
16 until EZGPIE EbdEeyPressed;
17 end.

Finally 1 want to mention, that breakpoints are not only working in the main program, but can
also be placed on lines inside your self-written procedures and functions.

2.2.2.3 Single Stepping (F7, F8 and F5+F9)

Instead of executing your script with F9 all at once, there is also a possibility to single step
through your code line by line by use of F7 (Step Into) and F8. (Step Over).

Apparently there are two features which have not been updated / implemented by OM Uli:

1) While single stepping, it will NOT be indicated in the ‘Source Code’ window, where your
script is actually halted (eg. by line color). This makes it hard for nontrivial scripts to
memorize where you actually are.

2) Both keys F7 and F8 actually call the ‘Step Into’ routine. | have verified that when
tinkering inside the resource section of the EZGPIB program. So it appears that ‘Step
Over’ was never implemented.

There is a trick to overcome this, by simply using breakpoints set with F5 in EVERY LINE and

‘single stepping’ with the F9 key through every script line. Honestly, | don’t know what the
maximum number of breakpoints for a single script might be, but so far | did not run into a limit.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 16/52

2.2.3 We write areal data acquisition application

Here | will describe the necessary steps to write a real data acquisition application. Of course, it
will be a simple one! But every complex task can be subdivided into a group of lower complex
tasks, which in turn can be subdivided in even lower complex tasks up to a point where the
tasks are real simple. This programming scheme is called top-down design and is well
supported by a PASCAL like programming language.

What | am going to show you is, how to set a frequency counter’s time base (in this case my old
but spry RACAL DANA 1996) to a value of 10 seconds, then wait for the measured results and
display the results in the output console from within a program loop that runs as long as no key
is pressed on the keyboard.

Hey you non-programmers: Sounds complicated? See and be staggered how easy it is!
You guessed it: That’'s where the name EZGPIB comes from!

From the File menu press the New entry. In general the source code part of the main window
will show:

Program New;

1

2

3 begin;
4 AL place vour code here
5

end.

Picture 11

But note that this does not need to be so! When using the New menu entry EZGPIB searches
for a file New.488 in its directory. If it is found it is loaded into the editor. What is that good for?

Imagine that from day to day you have to deal with different measurement tasks. Despite the
fact that the tasks are different they may have a lot in common: The bus addresses of your
GPIB devices normally stay the same and you may have made yourself a number of helping
routines that you use in a more general manner. In this case you store the framework that is
common for all your applications under the name New.488.

Whenever you choose New from the File menu your complete framework will be loaded into the
editor and you start to do your individual programming on the new task with everything common
already there.

While there are other possibilities to do the same, for example by using include files, | found this
an elegant way for handling the framework. For the sake of simplicity, let us assume that we
have the situation as shown in picture 11. First we change the program’s name to an
appropriate one and declare a constant holding the bus address of the counter. Should the
counter get a different address in the future, this will be the only point where we will have to
change the number!

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 17/52

Now the editor window may look like

1 Program Counter Test;

2

3 const Counter Address:i;
4

5 begin:

& A4 place vour code here
7 end.

Picture 12
Note, that even at this early stage of development, you can use the Compile menu entry from
the Program menu to check the syntax of what you have written (despite the fact, that there is
nothing to really run at the moment...).

In this case you will see

[Errar] Unnamed(3:22): is {'=") expected
Picture 13

Because we used the wrong syntax for the constant declaration, the compiler tells us that it
would like to see a ‘=’ instead the .’ that we used. He also tells us where it has found this bug:
Line 3 character 22. Note that in EZGPIB’s status line at the bottom of the main window you
always see where the cursor is currently located in the editor part of the window.

<
1323 [Editor

Picture 14

Let us correct the mistake and include the command to set the time base to 10 seconds. Now
your source should look like this. Note that EZGPIB does not distinguish between uppercase
and lowercase characters. You can use the writing that you prefer.

Program Counter Test;
const Counter Address=Z;
bhegin:

EIGPIE _BusWriteData (Counter Address,'GA10'):

1
2
3
4
=
&
7 end.

Picture 15

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 18/52

The String ‘GA10’ (Gate Adjust to 10 seconds) is the information that you need to get from the
counter’s manual.

Well, this is already a program that can be executed. If you execute it with the Run menu entry
from the Program menu, you should see that the counter changes its time base to 10 seconds.
Note, that the source contains nothing that reminds you of the Prologix adapter. The
BusWriteData procedure handles all that stuff for you and reminds me in its simplicity to what |
said about BASIC before.

| had already mentioned that once we had switched the counter to the new time base value, we
would do something in a program loop until a key is pressed on the keyboard. Very similar to
normal English we use a ‘repeat until’ for that purpose. Even the condition when the loop shall
stop sounds very familiar.

Program Counter Test:

const Counter Address=:i;

EZGFPIE BusWriteData (Counter Address,'GAL1O'):

1

2

3

4

5 begin;
&

7 repeat
g

=] until EZGPIE FhdEeyFressed;
10 end.

Picture 16

If you execute this program you will notice that the message window shows the information

Succesfully compiled

Picture 17

and the status line shows

1:1 Running <

Picture 18

which both of are indicators that your program is running in the loop. Press any key and you will
see the ‘Successfully Executed’ message appear in the message window and the ‘Running’
changes back to ‘Editor’.

Revision date: 05/01/2021

EZGPIB Manual

EZGPIB2_eng
Rev: 2.00
Page 19/52

Now let us put something useful into the loop. | did already mention before that there is an easy

to use function for reading data. So let’s apply it!

1 Program Counter Test:
2
3 const Counter Address=i;
4 Timeout=15;
=
6 var Answer:String:;
=
S begin;
=] EZGPIE_BusWriteData(Counter Address,'cl0'):
10 repeat
11 if EZGPIE BusWaltForData(Counter Address, Answer, TimeCut] then
12 begin;
13 EZIGPIE ScreenWriteln (inswer):
14 end:
15 until EZIGPIE FhdEeyPressed;
16 end.
Picture 19

Note that in order to use the elegant formulation

EZGPIB_BusWaitForData(Counter_Address,Answer,TimeOut)

we had to declare a variable ‘Answer’ of string type and a constant ‘Timeout’ with a value of 15.
Since the counter’s time base is set to 10, he should be able to answer within 15 seconds. If we

execute this program the console part of the main window will show

+9.9999999940247E+08
+9.9999999939037E4+06
+9.9999999937927E+06
+9.99999999334082E+06
+9.9999999330847E+06

rj ty o o

Picture 20

and every ten seconds a new line will be written. You don'’t like the scrolling and want to get rid
of that ‘F* stuff in the beginning of the string so that you can convert it into an number ?

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 20/52

Here we go:
1 Program Counter Test:;
2
3 const Counter Address=2;
4 TirmeOut=15;
5
6 var Answer:String;
77
S begin;
9 EZGPIE_BuslriteData(Counter Address,'GAl0'):
10 repeat
11 if EZGPIB_BusWaitForData(Counter Address, Answer, TimeOut) then
12 begin;
13 Answer:=EZGPIEB_Convert3tripToNwddber (Answer)
14 EZGPIE_ScreenClear;
15 EZGPIE_ScreenWriteln(inswer)
16 end;
17 until EZGPIE KhdKeyPressed;
18 end.
Picture 21
produces

+9.9999999935462E+06
Picture 22

that is: A new result overwrites the previous result.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 21/52

You may want the time information when the value was measured? Here it is:

1 Program Counter Test:;

2

3 const Counter Address=2;

4 TimeOut=15;

=

6 var Inswer:String;

7

S begin;

=] EZGPIE_BuslriteData(Counter Address,'GAl0'):
10 repeat
11 if EZIGPIB_BusWaitForData(Counter Address, Answer, TimeOut] then
12 begin;

13 Answer:=EZGPIE_Convert3tripToNuber (Answer)
14 EZGPIE_ScreenClear;

15 EZGPIE ScreenWrite (EZGPIE_ TimeNow) ;

16 EZGPIB_Screenllrite(' '):

17 EZGPIE ScreenWriteln(inswer):

18 end;

19 until EZGPIE_EKbdKeyPressed;
20 end.

Picture 23

This script will produce:

Cukput Console
12 .01 2007 15:01:17 +9.9999999936340E+06

Picture 24

Let me stop here and suggest that you have a look at the examples that will demonstrate you a
lot of other aspects of EZGPIB. If you find that you have difficulties with the PASCAL language
itself, | suggest that you get yourself a basic level introduction into PASCAL.

Please understand that you will definitely not need to become a top PASCAL programmer. You
need only a very basic understanding of PASCAL and programming habits and concepts to
work very successfully with EZGPIB.

To be honest: The example that | showed you above shows very bad programming habits for a
number of reasons. Nevertheless it has proved to work.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 22/52

If we are to talk about programming habits: The worst thing that | have done in the example
above is to wait that long for the answer of a device. Clearly, a counter with its time base set
to 10 seconds can only deliver a measurement value every 10 seconds, no discussion over
that. But instead of waiting for its answer we could have done other nice things in this time, for
example communication with other devices. While we wait for one device we cannot do
something different during this time. That leads to the question how to know when a device
has data available by other than just waiting for that data.

Program Counter Test;

const Counter Address=Z;
TimeOut=0.1;

var inswer:String;

begin;
EZGPIE_EBusFindillDevices;
10 EZGPIE_BusWriteData(Counter Address,'GAlD'):;
11 EZGPIE_ScreenClear:;
12 repeat

1
2
3
4
5
6
7
g
9

13 EZGPIB_TimeWaitForMultipleOf (1):
14 EZGPIB_ScreenGotoX¥(1,1):;
15 EZGPIE_ ScreenlWriteln(EZGPIE TimelNow) ;
16 If EZIGPIE_BusiSrg then
17 begin;
18 if EZGPIBE_BusSourceOfSrg=Counter Address then
19 begin;
20 EZGPIE_BusWaitForData(Counter Address, Answer, TimeOut);
21 Answer:=EZIGPIB_ConvertStripToNwder (Answer) ;
22 EZGPIE_ScreenGotoX¥Y (25,1);
23 EZGPIE_ScreenWriteln(inswer)
24 end;
25 end;
26 until EZGPIE_EbdKeyPressed;
27 end.
Picture 25

The GPIB has a nice concept for the so called SRQ = Service Request. Service Request is a
line of its own on the GPIB that can be activated by any device to indicate that it requests
service. Usually devices request service if they have new measurement values available but
other sources for a service request are possible. The controller needs to find out which device
request service and then reads the data of this device.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 23/52

EZGPIB and the Prologix adapter support this strategy very well. Have a look at the modified
version of the counter example above on the last page. Some things have been changed
against the last version of the example:

1) A call to EZGPIB_FindAllDevices has been added at the start of the program. This is
always good habit with EZGPIB. This procedure will try to detect all active devices on the
bus by reading their so called status register. Even older devices that cannot understand
IEEE-488-2 syntax (*idn? and stuff like that) have in most cases a status register and
can so be identified by asking for the value of the status register.

2) The console screen is only cleared once at the beginning of the program. After that the
cursor is positioned with a EZGPIB_ScreenGotoXY command to a specific x and y
position before the string is written.

3) Note the call to EZGPIB_WaitForMultipleOf in the main loop. This waits until an integer
multiple of its call value is over. With a ‘1’ we wait with this call until a new second has
arrived. We could have leaved this out and run many times faster through the main loop
but since we want to print out the time information in the main loop there is no necessity to
do it faster than once per second.

4) Note that we print out the time information every second. In addition every second we
check whether a SRQ is active or not by a call to EZGPIB_BusSrq. Only if this condition
is given, we ask the counter to give us his measured value. Because we can be sure that
it has a value available. In this situation, we can use a very short timeout of 0.1 second.

Note that by comparing the result of EZGPIB_BusSourceOfSrq to Counter_Address, we
double check that it is really the counter which requests service.

This example shows, that instead of waiting for the counter, we have done other things in the
meantime.

Note that not all devices signhalize a new measurement with a SRQ.

Lots of devices signalize it with setting a certain bit in their status registers and you have to
check their manuals to find out. In this case you will have to check their status register on a
regular base. Fast devices that can deliver a new measurement value every few ms may not
either use a service request or a bit in the status register. If they are fast, none of that is
needed.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 24/52

2.2.4 Data acquisition using serial ports

From its very beginnings up to now EZGPIB has also learned to handle serial ports well and in
an easy manner. Have a look at the well commented example below, which will read the regular
output of an HP53131 counter used as a TIC (time interval counter). Thank you Said for
inspiring me to that! You also find it under the accompanying examples.

Program HP53131;

Const Filename = 'C:\MyMeasurements\HP53131.Txt';

HPPort = 2;

Var HP_as_String:String; /\What we get from the counter
HP_as_Double:Double; /What we make out of it
Time:String; /Where we put the time in

function Init:Boolean;

begin;

if EZGPIB_FileExists(Filename) /IComment this out if you

then EZGPIB_FileDelete(Filename); /lalways want to append
EZGPIB_FileClearBuffer; /[Clear The Filebuffer
EZGPIB_FileAddToBuffer('Time/MJD"); /IAdd two strings to FileBuffer
EZGPIB_FileAddtoBuffer('TIC/s");

EZGPIB_FileWrite(Filename); /IAppend Contents of FileBuffer to FileName
HP_as_String :="; /lInitialize some vars

Result := EZGPIB_ComOpen(HPPort,9600,8,'N',1); //Open serial port and report result
end,;

function DataAvailable:Boolean;
begin;
Result := False;
HP_as_String := HP_as_String+EZGPIB_ComRead(HPPort); //Add things read from port to buffer

If Pos(#13+#10,HP_as_String) <> 0 then /Nf CR+LF found in buffer variable
begin;
EZGPIB_ConvertRemove(',',HP_as_String); //[Remove unwanted Comma

HP_as_String:=EZGPIB_ConvertStriptoNumber(HP_as_String);

Hp_as_Double:=EZGPIB_ConvertToFloatNumber(HP_as_String); //Convert string to Double

Hp_as_Double:=HP_as_Double * 1.0E-6; //53151's numbers are in ps! Result:=True;
end,;

end;

procedure HandleData;

begin;
Time := EZGPIB_ConvertToMJD(EZGPIB_TimeNow); //Get the time in MJD format
Time := EZGPIB_ConvertStripToNumber(Time); //Make sure it uses an decimal point
EZGPIB_FileClearBuffer; /IClear The Filebuffer
EZGPIB_FileAddToBuffer(Time); /IAdd time to FileBuffer
EZGPIB_FileAddtoBuffer(Hp_as_Double); //IAdd TIC value ot FileBuffer
EZGPIB_FileWrite(Filename); /[Append FileBuffer to FileName

EZGPIB_ScreenWrite(EZGPIB_TimeNow);
EZGPIB_ScreenWrite(*);
EZGPIB_ScreenWriteLn(Hp_as_Double);

Hp_as_String:=" //[Reset string buffer variable
end;

Revision date: 05/01/2021

EZGPIB Manual Rev: 2.00

EZGPIB2_eng

Page 25/52

/I main program loop

begin;

EZGPIB_ScreenClear;

EZGPIB_ScreenWrite('Start of program at ");
EZGPIB_ScreenWriteLn(EZGPIB_TimeNow);

if init then
begin;
repeat

If DataAvailable then HandleData;

EZGPIB_TimeSleep(0.1)
until EZGPIB_KbdKeyPressed,;

end

else EZGPIB_ScreenWriteLn('Error opening the com port...");
EZGPIB_ScreenWrite('Program terminated at *);
EZGPIB_ScreenWriteLn(EZGPIB_TimeNow);

end.

When looking at the output of this program, the built in console screen this will look like in

Picture 25.

Start
ni.
0.
nl.
nl.
ni.
ni.
0.
nl.
nl.
ni.
Program terminated a

06 .
06 .
0e .
0e .
06 .
0& .
06 .
0e .
0e .
06 .

of program

2007
2007
2007
2007
2007
2007
2007
2007
2007
2007

15:
15:
15:
15:
15:
15:
15:
15:
15:
15:

01:
01:
01:
01:
01:
01:
01:
01:
01:
01:

at
n3
n4
ns
&
nz
na
n9
10
11
12

01.06.2007 15:01:03
9.9912E-6
9.9937E-6
1,.00126E-5
9.9928E-6
1.00003E-5
1.00139E-5
9.9942E-6
1.00019E-5
1.00155E-5
9. 9955E-6
t 01.06.2007 15:01:12

Picture 26

The contents of the file that is generated by the program (note that the subdirectory
“MyMeasurements” has been created automatically) is

Time/MJD

TIC/s
54252.625729525462
54252.625741099473
54252.625752673484
54252.625764247496
54252.625775821973
54252.625787210651
54252.625798969995
54252.625810544007
54252.625822118018
54252.625833692029

9,9912E-6
9,9987E-6
1,00126E-5
9,9928E-6
1,00003E-5
1,00139E-5
9,9942E-6
1,00019E-5
1,00155E-5
9,9955E-6

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 26/52

which in turn read in with my PLOTTER utility will display as

Local PPS against M12+ PPS in my DIY GPSDO

1,0015 x 10 5 A [~ — Time/MJD
10014 x 1075 3 '“‘\ [v —TICls
1,0013x 105 3 A

1,0012 %1075 A
1,0011 x 105 [

1,0010 x 105 3]

\
\
1,0009 x 105 3 ‘\ -" ‘I
] |
\

1,0008 x 105 3

1,0007 x 108 3 /

1,0006 x 105] / \
1,0005 x 105 1 ‘l' \ ‘\ 'I \
] \
|

1,0004 x 105 /

1,0003 % 107 /
1,0002x10°5 E / || 'I \ -"
1,0001 x 10 E l" ‘|

0000105] i / \ / \
09960106 / / \ / \
9,9980 x 10] '|- / ‘l / ||
99970 x 108 E \- / l\ / \.
9,9960 x 108] / '\ ‘l / \.
9,9950 x 106 1 / ‘| / \ / !
9,9940x 108 / || / Y
99930 x 106 3 / \,/

99920 x 106 /

Delta-t/s

15:01:0315:01:0315:01:0415:01:0515:01:06 15:01:0715:01:08 15:01:0915:01:0915:01:1015:01:11
Time of day

Picture 27

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 27/52

2.3 What the Examples do
The following is a short description of what | have tried to demonstrate in the examples.

Test_01.488
This is the EZGPIB version of the famous ‘Hello World’ program.

Test _02.488
Demonstrates a simple for loop, basic math and console output.

Test_03.488
Demonstrates a simple for loop, with a timed wait condition.

Test_04.488
Demonstrates a main program loop, which is terminated by the user.

Test _05.488
Demonstrates the first real GPIB data transfers.

Test_06.488

Does the same as Test_05.488, but uses procedures and functions to get more structure
into the program source.

Test_07.488
Does the same as Test_06.488 but adds file output capabilities.

Test_08.488
Does the same as Test_07.488 but adds DDE capabilities.

Test _09.488
Demonstrates the concept and use of service requests.

Test _10.488
Demonstrates the use of include files.

Test 11.488
Demonstrates serial communication.

Test 12.488
Demonstrates how to receive a screen plot from a HP5371.

Test_13.488
Demonstrates direct port i/o (not possible with current version of MS-Windows!).

HP53131.488
Demonstrates serial communication with a HP53131.

XXXX.488

| have included some scripts that | have written for my own applications. Perhaps they are
helpful for you too. They are not so well documented but do their job too.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 28/52

2.4 Some new features

2.4.1 Multi Threading
Starting on version 2007-07-14, the internals of EZGPIB have changed a lot. Now EZGPIB is a

multi-threaded program, featuring four threads that indicate their condition by means of four
symbolized leds on the main window.

<

CE Q@
//' TN
Led 1 Led 2 Led 3 Script Led

The first thread is the program’s main thread, that is also associated with the main window
and Windows’'s message queue. This thread signalizes its working condition by regular
changing the state of Led 1. Note that this thread may be stopped or executed delayed due to
the way that Windows manages its multitasking and message queue handling. However, the
other threads are not subject to that and that has been the reason for making EZGPIB a
multithreaded application.

The second thread is the one that performs all the serial communication with the Prologix
adapter. This one signalizes its working condition by regular changing the state of Led 2.

The third thread is the one that generates and displays all the messages of the GPIB debug
window. This one signalizes its working condition by regular changing the state of Led 3.

These three threads are active all of the time EZGPIB runs. So you should see all three led’s
blink all over the time EZGPIB is active.

The fourth thread is the one in which your script is executed. Unlike the first three threads, |
as the author of EZGPIB do not know well what is happening inside that thread, because you as
the author of the script decide. | include a new procedure called Changeled, that you can use
inside your script at a position that is executed on a regular base, to indicate that the script
thread is active too.

Multi-threading should make everything run much smoother as before. Time-driven events in
your script can no more be delayed by the GUI.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 29/52

2.4.2 GPIB32.DLL Support

Starting on version 2007-12-24, support for GPIB32.DLL was added. That is: If no Prologix
interface board is found, then EZGPIB tries to detect the presence of the GPIB32.DLL which is
a good indicator that a DLL based IEEE488 interface is available. Then EZGPIB tests whether
the DLL reports the presence of an active IEEE488 interface.

Lg Debug Messages

COH1 was detected on your systen A
COH3 waz detected on your systen
COH4 waz detected on your systen

Ho Prologix GPIE interface has been found on vour system.

The presence of a GPIB32 DLL has been detected on yvour system.

How checking for supported interfaces.

The first freese IEEE488 interface of ywour system has been assigned "GPIBO".

"GFIB0" has been opened with primnary-secondary address 0. EOS enabled. EOT disabled and a time out of 300 ms.
The IEEE488 interface "GPIB0" will be used for all IEEE-488 bus activities.

S >

Picture 29

On my system the debug window will look like shown above in this case. Note that the support
for GPIB32.DLL has only been tested with products from National Instruments. | can make no
promise whatsoever that this support will work with boards and DLLs from other manufacturers.

The really nice thing about this DLL support is the fact that you don’'t have to learn anything
new. Almost All commands (with some minor differences explained in the command description)
work for the Prologix adapter as well as for the DLL based interface.

2.4.3 VISA32.DLL Support

Starting on version 2008-06-08, support for VISA32.DLL was added. That is: If your system has
a VISA library installed like the Agilent IO library then EZGPIB now can make use of VISA
function calls. There are only 5 new functions to learn to open the world of VISA based data
acquisition. If a VISA32.DLL is detected the debug window will say:

@ Debug Messages E]@'gl
COM1 waz detected on vour system A
COH3 waz detected on vour systenm
COM4 was detected on your system

Ho Prologiz GPIE interface has besn found on yvour system.

The presence of a GPIB32 DLL has been detected on wour system.

How checking for supported interfaces.

The first free IEEE488 interface of vour system has been assigned "GPIEBO".

"GPIBO0" has been opened with primary-secondary address 0, EOS enabled. EOT di=sabled and a time out of 300 ns.
The IEEE488 interface "GFIBO" will be used for all IEEE-488 bus activities.

The presence of a VISA32 DLL has been detected.
You will be able to make use of VISA funtion calls.

Picture 30

Revision date: 05/01/2021

EZGPIB Manual

EZGPIB2_eng
Rev: 2.00
Page 30/52

2.4.3.1 VISA Communication Demo

All the 5 new functions are used in the following demo script:

Program VISA; /I Demonstrates VISA communication

Var Status:Integer,
CountWritten:Integer;

CountRead:Integer; RM:Integer; VI:Integer; Answer:String;

begin;
Status:=EZGPIB_viOpendefaultRM(RM);
Status:=EZGPIB_viOpen(RM,'GPIB0::9::INSTR',0,0,VI);
Status:=EZGPIB_viWrite(VI,’OUTPUT ON',CountWritten);
Status:=EZGPIB_viWrite(VI,'VOLT 12.500',CountWritten);
Status:=EZGPIB_viClose(VI);
Status:=EZGPIB_viOpen(RM,'GPIB0::10::INSTR',0,11,VI);

Status:=EZGPIB_viWrite(VI,END ALWAYS',CountWritten);

Status:=EZGPIB_viWrite(VI,'DCV',CountWritten);

Status:=EZGPIB_viWrite(VI,NRDGS 1,SYN',CountWritten);

Status:=EZGPIB_viWrite(VI," TRIG SGL',CountWritten);
Status:=EZGPIB_viRead(VI,Answer,CountRead);
EZGPIB_ScreenWriteln(Answer);
Status:=EZGPIB_viClose(VI);

end.

This script opens a VISA session, then connects to my HP6632 power supply on address 9 of
the bus and sets it to 12.5 Volt output. Then it closes the connection and connects to my

HP3457 voltmeter on address 10 of the bus to read this voltage back.

The script above together with debug outputs is to be found in sample VISA.488.

Note that EZGPIB can only detect the presence of the VISA32.DLL but nothing else. Use the
tools that come together with the DLL to explore what interfaces and what instruments are

available using the VISA driver.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 31/52

2.4.4 Prologix LAN GPIB Interface Support

Starting on version 2008-08-02, the support for the new Prologix LAN GPIB adapter has been
built in. After startup of EZGPIB, the search for a Prologix LAN GPIB adapter is performed as
the first task. Note that in order to detect the LAN GPIB interface its IP-address needs to be in
the same network segment as the IP-address of your PC.

If the Prologix LAN GPIB adapter is configured to use DHCP, then this will usually happen when
you connect the interface to your local network and a local DHCP server like a DSL router is
available. If the interface is configured to make use of a fixed IP-address, you have to take care
yourself for matching IP-address range. Consult the Prologix manual for answers to questions of
network management, necessary for the LAN GPIB interface.

When a LAN GPIB adapter is detected this will clearly be stated in the debug window which in
this case will display:

" Debug Messages E‘ El E|

Searching for an Prologixz GFIB-LAN interface.

4 Prologixz GPFIB-LAN interface ha= been found on yvour system with IP addresss 197 168.178.36
Send ++auto 0 command .

Send ++mode 1 command to make it the system controller

Send ++auto 0 command again.

The Prologiz GPIE interface will be used for all IEEE-488 bu= activities.

Picture 31

The IP-address displayed will of course be different on your system. No further action is
necessary. Just use EZGPIB as if a USB GPIB interface or a DLL based plugin card were
available. The only difference that you may notice when working with a GPIB LAN interface is
that the debug window will tell you

@ AES

FLHET GFIE OUT: ++addr 10 ~
PLHET GPIE CUT: TRIG SGL

FPLHET GFIE OUT: ++addr 10

FLNET GFIE OUT: ++read_tmo_m= 4000

FLHET GFPIE OUT: ++read 10

PLHET GPIE IN : 2.9589710E+00

Picture 32

where ‘PLNET’ indicates a Prologix network based device. With a USB based device every line
will start with 'PLUSB’.

Revision date: 05/01/2021

EZGPIB Manual

EZGPIB2_eng
Rev: 2.00
Page 32/52

2.4.5 EOI Detection Configuration

Starting on version 2008-08-02, the behavior of EZGPIB concerning the detection of the end of
device answers has changed. | had believed that the use of the bus EOI line is pretty much a

standard for indicating the end of a message.

In the course of time | got acquainted to more and more devices that:

- would not make use of the EOI line by default but needed to be told explicitly to do so. My
own devices of this type include a Rohde & Schwarz URV-5 RF voltmeter and

a HP3457 multimeter.

- would make use of the EOI on some answers and not on other answers. Which | would
not like to comment.... The HP437B power meter seems to belong to this group.

- cannot be convinced to make use of the EOI line at all. The Racal Dana 1991 and 1992
counters seem to belong to this group although my own 1996 type counter uses EOI.

Detection that you are confronted with a problem with a missing EOI based problem is
everything else then easy business. | have for that reason decided that the standard detection

method for the end of device messages will from now on be EOS based.

EOS based means that not a hardware line on the bus is obeyed, but the messages itself are
checked for termination characters. The most often used termination character is the

<LineFeed> (ASCII char #10dec Or OAhex)

For all interfaces the use of EOS and the <LineFeed> as the EOS-char is now default!

If you wish to change that, you will have to use one of the procedures below:

Procedure EZGPIB_BusSetEos(How:Longlnt)

This procedure relates directly to the ‘“++eos 0/1/2/3' command of the Prologix adapter.

Domain: Prologix

Procedure EZGPIB_BusSetEos(How:Boolean);

This procedure enables/disables the use of the EOS char. The default is ‘TRUE’;

Domain: DLL based

Procedure EZGPIB_BusSetEOSChar(How:Byte)

This procedure sets the EOS char. The default is “10” (Line Feed);

Domain: DLL based

Revision date: 05/01/2021

EZGPIB Manual

EZGPIB2_eng
Rev: 2.00
Page 33/52

2.4.6 File Menu Enhancements

Starting with version 2008-10-29, the File menu has several additional entries. <Parameters>
and <Log Debug Messages into file> will be explained in detail afterwards:

R

1 "

e

@ EZGPIB (started as EZGPIB2.exe)

o S— —
File | Edit Search Program Debug Messages Help About
Parameters Source Code
New Strg+N
Open Strg+0
Open Recent 4 NFA-1_Plot.488
Save Strg+S
Save as Strg+A
Log Debug Messages into file
Page Setup s
Printer Setup [7
Print Preview "y
Print
Exit Compiler & Debug Me
Picture 33

If you check <Log Debug Messages into file> then every message from the Debug Messages
Window will be additionally logged into the text file “EZGPIB2.exe_DebuglLog.Txt". Look for this
file in the directory where EZGPIB2 itself is to be found.

With a mouse click on <Parameters> a window opens as shown in Picture 34

-

Parameters

UserFileMName is

[Atprogram start search far Prologix LAN-GFIB cantraller
[v Atprogram start search far Pralogix USBE-GPIB contraller
[Atprogram start search for GPIB32. DLL hased contraller
[Atprogram start search for vISA32 DL

[v Cannect Prologix LAN-GFIEB at

192.168. 1 .100

|C:\,EZGPIEI\Data\,UserFiIeName.b-d

[

Cancel ||; |

o

Picture 34

By means of this window you can individually set which types of interfaces shall be searched at

program start.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 34/52

2.4.7 Implicit Variable ‘UserFileName’

In the edit field you see the name of a file. If you use the variable name “UserFileName” in your
script, then the contents of this variable will hold the filename displayed here. For example the
script

A" EZGPIB
File Edit 3Search Program Debug Messages Help Abouk

Source Code

1 Program UserFilellame:

z

3 hegin:

4 A4 Zet the UserFilepname from <Filer <Parsmeters> first
5 S4 and then execute the script

& EIGFIE Screenllriteln(UserFilensame);

7 end.

ﬁ ﬁ ﬁ ﬁ Camniler & Nehnn Mezzanes
Picture 35

will lead to the result

Qutput Console
| ~Programme~Borland~Delphit~FProjects~EZGFIB~te=t

1:1 Editar Z:\Programme!Borland\DelphigiProjectst EZ GPIBY UserFileMame, 485

Picture 36
Note that you do NOT have to declare the variable UserFilename, it is always there with the

correct contents. You can edit the UserFileName variable directly in the edit field or use the
symbol right of it to open a Windows style “File Save Dialog”.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 35/52

2.4.8 Single Step and Breakpoint Support
The support for single step operation using F7 and F8 has been improved a lot.

The support for Breakpoints in the source has been improved a lot. Note: If your source
contains Breakpoints it is now handled different when you execute it. With Breakpoints

<

CRCRORE)
Led 2 Led 3 Script Led

Led 2 and Led 3 will flash in sync, indicating that the script is executed in the program’s main
thread. That makes supporting Breakpoints easier but has the disadvantage that the script
execution may stop if you handle the main window.

Without Breakpoints the script is executed in a thread of its own and cannot be interrupted by
actions form the main thread.

Breakpoints can be set/cleared by placing the cursor in the respective line and pressing F5
several times.

2.4.9 GPIB Address Parameter and Sub Address Support

Normally the GPIB address parameter is the address of the instrument on the GPIB bus in the
range 0 to 30. For older instruments, the address is often set with a DIP switch located near the
GPIB connector. New instruments often define the GPIB address using the front panel keys of
the instrument. For most instruments, the address parameter is simply the GPIB address.

Some systems, for example systems based on the VXI bus, require a GPIB sub address to be
used. These systems are usually collections of instruments in a single chassis. The chassis has
a GPIB address, and each individual instrument is addresses with the sub address.

EZGPIB allows the sub address to be placed in the upper 8 bits of the GPIB address parameter.
GPIB sub addresses are also in the range of 0 to 30. The Prologix convention maps these
addresses into the values from 96 to 126. National Instruments only supports values from 1 to
30. EZGPIB supports both, the Prologix and National Instruments conventions for defining the
sub address within the upper eight bits.

Example:

Assume that you have an HP75000 VXI system at GPIB address 9 with a multimeter installed.
The command processor of the HP75000 has sub address 0 and the multimeter sub address 3.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 36/52

Using the National Instruments convention, here are the values for the sub address
Command Processor 0+1=1
Multi Meter 3+1=4

To move the value to the upper 8 bits, multiply the sub address value by 2% = 256 and add it to
the GPIB address

Command Processor address = 1*256 + 9 = 265
Multi Meter address = 4*256 + 9 = 1033

Using the Prologix convention, here are the values for the sub address Command

Processor 0+96 =96

Multi Meter 3 + 96 =99

To move the value to the upper 8 bits, multiply the sub address value by 2% = 256 and add it to
the GPIB address

Command Processor address = 96*256 + 9 = 24585
Multi Meter address = 99*256 + 9 = 25353

Of course, it is more convenient and understandable to let the EZGPIB compiler do the
calculation for you. Here is the portion of code that defines the sub address from the example
scripts HP75000Test.488 and HP75000TestA.488.

const
HP75000 = 9; {GPIB Address of VXI Mainframe}
HP75000SystemSA = 0; {Sub address of VXI system controller}
HP75000DVMSA = 3; {Sub address of VXI Digital Multimeter}

{Fully qualified address of VXI system controller (National Instruments convention)}
HP75000System = HP75000 + 256* (1+HP75000SystemSA);

{Fully qualified address of VXI Multimeter (National Instruments convention)}
HP75000DVM = HP75000 + 256* (1+HP75000DVMSA);

const
HP75000 = 9; {GPIB Address of VXI Mainframe}
HP75000SystemSA = 0; {Sub address of VXI system controller}
HP75000DVMSA = 3; {Sub address of VXI Digital Multimeter}

{Fully qualified address of VXI system controller (Prologix Convention)}
HP75000System = HP75000 + 256* (99+HP75000SystemSA);

{Fully qualified address of VXI Multimeter(Prologix Convention)}
HP75000DVM = HP75000 + 256* (99+HP75000DVMSA);

If debug messages are enabled and the Prologix convention is being used, both of these
definitions will result in the follow address commands:

For the command processor:
++addr 9 96

For the multimeter:
++addr 9 99

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 37/52

3 EZGPIB Functions and Procedures

The following is a list of available functions and procedures that you can list with the Help menu
entry. There are certain ones that have been programmed especially for EZGPIB.

The names of each dedicated function start with EZGPIB_. The next characters after the
underscore try to indicate into which category the procedure or function falls. While ‘Bus’
indicates that it must be something GPIB specific ‘Kbd’ indicates that the procedure or function
is keyboard relevant and so on.

Note that instead of typing EZGPIB_ again and again in the editor you can use the shortcut
CTRL-E (or STRG-E on European keyboards) to generate an EZGPIB_ entry.

3.1 Bus Setup and Control (Prologix and DLL)

3.1.1 Query Bus and Adapter Parameters

Procedure EZGPIB_BusFindAllDevices

This procedure will try to detect all active devices on the bus by reading their status byte.
You can open the debug window to see what is going on. Every device in the range 0-30 is
asked to report his status byte.

You should call this procedure at the start of every GPIB program that you write!

It sets some internal variables of EZGPIB used by other functions (for example the highest
device address currently in use) to the correct value.

Every device than can deliver a measurement value should have a status byte. There may
be some pure output devices (talk only) that do not have a status byte and cannot be
detected this way.

| found that the Wavetek 278 function generator does not have a status byte.
Domain:Prologix & DLL based

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 38/52

This is how the output in the debug window might look like, while executing the procedure
‘EZGPIB_BusFindAllIDevices’, which scans the bus for available GPIB devices:

@ GPIB| debug window:

GPIB OUT: ++auto 0

GPIE OUT: ++4=poll

GFIE IN : 8

GPIB OUT: ++=poll 2

GFIE IN : 18

GPIEB OUT:. ++=poll 3

GPIE IN : 130

GPIE OUT: ++4+=poll 4
|3
6

=

GFIE IN : 0O

GPIE OUT: ++=poll
GFIE IN : 0O

GPIE OUT: ++=poll
GFIE IN : 0O

GPIE OUT: ++4+=poll 7
GPIE OUT: ++=poll 8
GFIE OUT:. ++=poll 9
GPIE OUT: ++=poll 10
GPIE OUT: ++=poll 11
GPIE OUT: ++spoll 12
GPIE OUT: ++=s=poll 13
GPIE OUT: ++=poll 14
GPIE OUT: ++=poll 15
GPIE OUT: ++=poll 16
GPIE OUT: ++=s=poll 17
GPIE OUT: ++=poll 18
GPIE OUT: ++=poll 19
GPIE OUT: ++=poll 20
GPIE OUT: ++=poll 21
GPIE OUT: ++=poll 22
GPIE OUT: ++s=poll 23
GPIE OUT: ++=poll 24
GPIE OUT: ++=poll 25
GPIE OUT: ++=poll 26
GPIE OUT: ++=poll 27
GPIE OUT: ++=poll 28
GPIE OUT: ++=poll 29
GPIE OUT: ++=poll 30

Picture 33

Function EZGPIB_BusGetAddressedDevice:Longint

Returns the address of the currently addressed bus device
Domain:Prologix

Function EZGPIB_BusGetTimeOut:Double

Queries the current setting of the read timeout value in [ms] when reading from GPIB bus.
Range is between 0 and 32,000 milliseconds (32 seconds).

This function is directly related to the ‘++read_tmo_ms’ command of the Prologix adapter.
Domain:Prologix

Function EZGPIB_BusGetEoi:LongInt

Queries the current setting of EOI signal assertion.
This function is directly related to the “++eoi’ command of the Prologix adapter.
Domain:Prologix

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 39/52

Function EZGPIB_BusSourceOfSrg:LonglInt

Returns the address of the device currently requesting service. If several devices are
requesting service, the function will return the lowest device address that needs service.

It is mandatory to call ‘EZGPIB_BusFindAllDevices’ once before using this function.
Domain:Prologix & DLL based

Function EZGPIB_BusWaitForSrq(MaxWait:Double):Boolean

This function waits ‘MaxWait’ seconds or until a SRQ takes place whichever is earlier.

It returns ‘TRUE’, if a SRQ has been noticed within the timeout.
Domain:Prologix & DLL based

3.1.2 Set Bus and Adapter Parameters

Procedure EZGPIB_BusAddressDevice(Which:LonglInt)

Sets the GPIB address to ‘Which’. Meaning of the GPIB address depends on the operating
mode of the controller. In CONTROLLER mode, it refers to the GPIB address of the
instrument being controlled. In DEVICE mode, it is the address of the GPIB peripheral that
the Prologix adapter is emulating. This function directly issues an ‘++addr Which’ command
to the Prologix adapter.

Note that EZGPIB does not include any special command to put the controller in device
mode! In order set to device mode, you must send the command directly by calling:
EZGPIB_BusWriteData(DeviceAddr, '++mode 0;

where ‘DeviceAddr’ is the address of the GPIB peripheral that the controller is emulating.
Domain:Prologix

Procedure EZGPIB_BusSetEOS(How:Booelan);

This procedure enables/disables the use of an EOS GPIB termination char.
The default is TRUE'.
Domain: DLL based

Procedure EZGPIB_BusSetEOSChar(How:Byte)

This procedure sets the EOS char. The default is “10” (Line Feed).
Domain: DLL based

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 40/52

3.2 Program Flow Functions

Function EZGPIB_BusSPoll(Device:Longint):Longint

Performs a serial poll to return the status byte of ‘Device’
Domain:Prologix & DLL based

Function EZGPIB_BusSrqg:Boolean

Returns ‘TRUE’ if a device has requested service.
Domain:Prologix & DLL based

Function EZGPIB_BusSrqStatus:Longint

Returns the status byte of the service requesting device.
Domain:Prologix & DLL based

Procedure EZGPIB_BusTrigger

Sends a Trigger command to the currently addressed instrument. The instrument needs to
be set to single trigger mode and remotely controlled by the GPIB controller.
Domain:Prologix & DLL based

3.3 Prologix Adapter Setup

Function EZGPIB_BusGetVer:String

Returns the adapter type and current software revision returned by the ‘++ver’ cmd
of the Prologix adapter.
Domain: Prologix

Procedure EZGPIB_BusAutoOFF

This function directly relates to the ‘++auto 0’ command of the Prologix adapter.
Domain:Prologix

Procedure EZGPIB_BusAutoON

This function directly relates to the ‘++auto 1’ command of the Prologix adapter.
Domain:Prologix

Procedure EZGPIB_BusDisableEOI

This function directly relates to the ‘++eoi 0’ command of the Prologix adapter.
Domain:Prologix

Procedure EZGPIB_BusEnableEOI

This function directly relates to the ‘++eoi 1’ command of the Prologix adapter
Domain:Prologix

Procedure EZGPIB_BusGotoLocal(Device;integer)

This function directly relates to the ‘++loc’ command of the Prologix adapter.
Domain:Prologix & DLL based

Procedure EZGPIB_BusSetEos(How:Longlint)

This function directly relates to the ‘++eos 0/1/2/3’ command of the Prologix adapter
Domain:Prologix

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 41/52

3.4 Instrument Control

Procedure EZGPIB_BusIFC

Performs an Interface Clear on the GPIB bus.
Domain:Prologix & DLL based

Procedure EZGPIB_LocalLockOut

Performs a local lockout on the currently addressed instrument.
Domain:Prologix & DLL based

Procedure EZGPIB_BusSetTimeOut(How:Double)

Sets the timeout value in [ms] when reading from GPIB bus.
Range is between 0 and 32,000 milliseconds (32 seconds).
Domain:Prologix & DLL based

3.4.1 Read from Bus

Function EZGPIB_BusDataAvailable:Boolean

Returns ‘TRUE’ if any device on the bus has sent data and has terminated it with the
current EOI or EOS delimiter.
Domain:Prologix

Function EZGPIB_BusGetData:string

Returns the string that has last been sent over the bus by a device.
Domain:Prologix

Function EZGPIB_BusWaitForData(Device:LongInt;ForWhat:string;
MaxWait:Double):Boolean

Waits ‘MaxWait’ seconds or until ‘Device’ answers whichever is to take place earlier.
If ‘Device’ answers within timeout, the answer is returned in ‘ForWhat’ and the function
returns ‘TRUE’. The end of the message is detected by the delimiter sent by the device.

Use this function for single measurement values.
Domain:Prologix & DLL based

Function EZGPIB_BusWaitForDataBlock(Device:LonglInt;ForWhat:string;
MaxWait:Double):Boolean

Waits ‘MaxWait’ seconds for an answer from ‘Device’. If ‘Device’ answers within timeout the
answer is returned in ‘ForWhat’ and the function returns ‘TRUE’. This function does not look

at delimiters that could be a part of the answer, but instead waits the complete ‘MaxWait’
time.

Use this function for longer data blocks like screen shots and so on.
Domain:Prologix & DLL based

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 42/52

3.4.2 Write to Bus

Procedure EZGPIB_BusWriteData(Device:LongInt;What:string)

Sends the string ‘What’ to device ‘Device’ over the GPIB bus.
Domain:Prologix & DLL based

3.5 Serial Port Communications
3.5.1 Initial COM Port Setup

Function EZGPIB_ComOpen(Com:LonglInt;Baudrate:LonglInt;DataBits:Longint;
Parity:Char;StopBits:Longlnt):Boolean

In addition to the serial port to which the Prologix adapter is connected, EZGPIB can
handle as many serial ports for communication to other serial devices as Windows
itself can handle, that you can use freely for your own communication with serial
devices. This function opens the port and returns ‘TRUE’ if that has been possible
without error. Note that you don’t have to close serial ports that your application has
opened. This is automatically done for you when your application terminates.

3.5.2 Read from Serial COM Port

Function EZGPIB_ComRead(Which:Integer):string
This function reads what is available in the serial input buffer of COM port ‘Which’.

3.5.3 Write to Serial Port

Procedure EZGPIB_ComWrite(Which:Integer;What:string)
This procedure outputs string ‘What’ to serial COM port ‘Which’.

Procedure EZGPIB_ComWriteWithDelay(Which:Integer;What:string;DelayMS:Longlint)

This procedure outputs string ‘What’ to serial COM port ‘Which’, but with ‘DelayMs’
milliseconds pause between the characters to deal with slow external devices.

3.5.4 Get/Set Serial Port Control Pins

Function EZGPIB_ComCTS(Which:Integer):Boolean
This function checks the condition of the CTS pin of COM port ‘Which’.

Function EZGPIB_ComDSR(Which:Integer):Boolean
This function checks the condition of the DSR pin of COM port ‘Which’.

Procedure EZGPIB_ComSetBreak(Which:Integer;How:Boolean)

This procedure may be used to set the transmit data line of COM port ‘Which’ statically

to ‘0’ or 1" in order to generate a ‘break’ condition on the serial line.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 43/52

Procedure EZGPIB_ComSetDTR(Which:Integer;How:Boolean)
This procedure may be used to set the DTR line of COM port ‘Which’ permanently to
‘0’ or 1’ level.

Procedure EZGPIB_ComSetRTS(Which:Integer;How:Boolean)
This procedure may be used to set the RTS line of COM port ‘Which’ permanently to
‘0’ or ‘1’ level.

3.6 String Functions
3.6.1 Numeric to String Conversion

Function EZGPIB_ConvertHextolnt(HexString:string):string

Converts a string containing the hexadecimal representation of a number into a string with
the decimal representation of that number.

Function EZGPIB_ConvertStripToNumber(V:Variant):string
Strips everything away from a string that does not belong to a number representation.

Function EZGPIB_ConvertToDecimalComma(Where:string):string

Converts a string containing a number with decimal point to a string with a number
with decimal comma.

Function EZGPIB_ConvertToDecimalPoint(Where:string):string

Converts a string containing a number with decimal comma to a string with a number
with decimal point.

Function EZGPIB_ConvertToExponential(V:Variant;TotalLength:Longint;
ExponentLength:Longlint):string

Converts the variant value 'V’ (may be string, integer or floating point) into a string using
exponential format of total length ‘TotalLength’ and the length of the exponent of
‘ExponentLength’.

Function EZGPIB_ConvertToFixed(V:Variant;digits:LongInt):string

Converts the variant value 'V’ (may be string, integer or floating point) into a string using
fixed point format with a length of ‘digits’ digits.

3.6.2 String to Numeric

Function EZGPIB_ConvertToFloatNumber(Which:string):Double
Converts a string to a real number.

Function EZGPIB_ConvertToIntNumber(Which:string):LongInt
Converts a string to a integer number.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 44/52

3.6.3 Date to String

Function EZGPIB_ConvertToMJD(What:Variant):string

Converts the time/date value ‘What’ (may be string, integer or floating point) into a string
giving the Modified Julian Date representation as the result.

(Use EZGPIB_TimeNow to get the current date and time in TDateTime format).
3.6.4 General

Function EZGPIB_StringNthArgument(N:LonglInt;Where:string;Delimiter:Char):string

Returns the Nt argument from a string in which the individual arguments are separated by
the delimiter character.

Procedure EZGPIB_ConvertAddToString(Where:string;What:Variant)

Use this procedure to append the variant value ‘What’ (may be string, integer or floating
point) to the end of the string ‘Where’.

Procedure EZGPIB_ConvertRemove(What:string;FromWhere:string)
Removes all instances of string ‘What’ in string ‘Where’.

3.7 Filel/O
3.7.1 General

Function EZGPIB_FileExists(Which:string):Boolean
Returns true if file ‘Which’ exists.

Procedure EZGPIB_FileDelete(Which:string)
Deletes file ‘Which’. String ‘Which’ may also contain the path of the file.

Procedure EZGPIB_FileExecute(WhichProgram:string;CMDParameters:string)

From within a EZGPIB program you can execute another program with the filename
‘WhichProgram’ using command line parameters ‘CMDParameters’.

3.7.2 Read from File

Function EZGPIB_FileReadClose:Boolean
Closes the text file which is open for reading and reports the result.

Function EZGPIB_FileReadEOF:Boolean
Returns the EOF (End of file) condition of a text which is open for reading.

Function EZGPIB_FileReadGetBuffer:string
Reads and returns the next line of the text file which is open for reading.

Function EZGPIB_FileReadOpen(Datafilename:string):Boolean
Opens a text file for reading and returns the result.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 45/52

3.7.3 Write to File

Procedure EZGPIB_FileAddToBuffer(What:Variant)

EZGPIB features an easy mechanism for file output. Basically there is an internal file buffer
variable which happens to be a string and represents one line of the data file.

With this procedure you append a new item that you want to write to the file at the end of
the file buffer. A tab character will be automatically inserted into the file buffer before ‘What’
is appended to the file buffer. With this procedure you assemble the next line to be written
to the file. If the line is complete, use EZGPIB_FileWrite to output the file buffer to the
physical file.

Procedure EZGPIB_FileClearBuffer

This procedure clears the internal file buffer variable in order remove previous lines and
produce a new output line.

Procedure EZGPIB_FileWrite(Where:string)

Writes the file buffer to file ‘Where’. ‘Where’ may contain the path of the file. If the file does
not exist it is automatically created (including the necessary path!). If the file exists, the file
buffer is appended to the end of the file. After that, the file is closed.

Please note, that due to the operating system overhead, this is a slow acting function.
3.8 Keyboard Input

Function EZGPIB_KbdKeypressed:Boolean
Returns ‘TRUE’ if a key has been pressed. Used together with the following function.

Function EZGPIB_KbdReadKey:Char

Reads a key from the keyboard. You have to test yourself before, whether a key has been
pressed or not with ’TEZGPIB_KbdKeypressed’.

Function EZGPIB_KbdReadLn:Variant
Waits for a keyboard input that is terminated with a carriage return.

3.9 Telnet

Function EZGPIB_TelnetConnect(Name:string;IPAddress:string;Port:Longlnt):Boolean

Opens a Telnet connection to IP-address ‘IPAddress’ and port ‘Port’ and returns whether
the connect run ok. This connection is given the name ‘Name’. You do not need to
disconnect ore close Telnet connections that your application has connected. This is done
automatically when your application terminates.

Function EZGPIB_TelnetRead(Name:string):string
Reads all available data from the active Telnet connection ‘Name’.

Procedure EZGPIB_TelnetWrite(Name:string; What:string)
Writes string ‘What’ to active telnet connection ‘Name’.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 46/52

3.10 Date/Time

Function EZGPIB_TimeNewSecond:Boolean
Returns ‘TRUFE’, if a new second has arrived since the last call of the function.

Function EZGPIB_TimeNow:TDateTime
Returns the current date and time in TDateTime format.

3.11 DDE

Procedure EZGPIB_DDEServerCreateltem(ltem:string)

EZGPIB can be a DDE server for other programs. Use this procedure to create a new
DDE item by the name of ‘Item’.

Procedure EZGPIB_DDEServerAssignvalue(ltem:string;Value:string)

Use this procedure to assign a DDE item (that has been created with
EZGPIB_DDEServerCreateltem) a value.

Procedure EZGPIB_DDEServerClearAll
Use this procedure to clear all previously created DDE items.

3.12 Miscellaneous
3.12.1 Debug Window

Procedure EZGPIB_DebugWriteLn(V:Variant)

Outputs the variant value ‘V’ (may be string, integer or floating point) to the
‘Debug Messages’ window.

This apparently produces no output in the debug window? (at least on my pc ;-))
3.12.2 Port I/O

Direct port I/O is very likely causing troubles on actual operating system versions and
will obviously not operate on all 64 bit windows versions.

Procedure EZGPIB_PortOut(Port:Word;What:Byte)

Due to the use of the INOUT.DLL, EZGPIB programs can perform direct port 1/O.
This procedure writes the value of byte ‘What’ to port ‘Port’ if operational.

Function EZGPIB_Portin(Port:Word):Byte

Due to the use of the INOUT.DLL, EZGPIB programs can perform direct port 1/O.
This function returns the current value of port ‘Port’ if operational.

3.12.3 LED

Procedure EZGPIB_ChangelLed

Changes the state of the rightmost status led. Use this procedure to indicate that your script

performs a certain line of code in a regular manner.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 47/52

3.13 Time Delay

Procedure EZGPIB_TimeSleep(HowLong:Double)
Do nothing for ‘HowlLong’ seconds.

Procedure EZGPIB_TimeWaitForMultipleOf(Seconds:LongWord)
Wait until a integer number of seconds has been reached.

Example:
EZGPIB_TimeWaitForMultipleOf(60) will wait until the start of the next minute,
EZGPIB_TimeWaitForMultipleOf(1800) will wait until the start of the next half hour.

3.14 Output to Console Screen

3.14.1 Writing Information to Screen

Procedure EZGPIB_ScreenWrite(V:Variant)

Write the variant value V'’ (may be string, integer or floating point) at the current cursor
position.

Procedure EZGPIB_ScreenWriteLn(V:Variant)

Write the variant value ‘V’ (may be string, integer or floating point) at the current cursor
position and moves the cursor to the begin of the next line.

3.14.2 Manipulating Screen

Procedure EZGPIB_ScreenClear
Clears the console output screen and positions the cursor to line 1 position 1.

Procedure EZGPIB_ScreenClearEol
Clears the actual cursor line from the cursor position to the end of line.

Procedure EZGPIB_ScreenCursorOff
Switches the console screen cursor OFF.

Procedure EZGPIB_ScreenCursorOn
Switches the console screen cursor ON.

Procedure EZGPIB_ScreenGotoXY(x:Longint;y:Longlint)
Positions the console screen cursor to position X’ in line ‘y’.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 48/52

3.15 VI Functionality
3.15.1 Open

Function EZGPIB_viOpenDefaultRM(var RM:Integer):Integer;

Opens a VISA session. Returns a handle in ‘RM’ for that session that needs to be used
in subsequent VISA function calls. Function result is ‘O’ when the call succeeds.

Function EZGPIB_viOpen(RM:Integer;ResourceName:String;AccessMode:Integer;
TimeOut:Integer;var Vl:Integer):Integer;

Opens a VISA connection to a single instrument. Returns a handle to this connection in ‘VI’
that needs to be used in subsequent read/write and close calls. Function result is ‘0’ when
the call succeeds.

3.15.2 Close

Function EZGPIB_viClose(VI:Integer):Integer;
Closes the connection to handle ‘VI'. Function result is ‘0’ when the call succeeds.

3.15.3 Read

Function EZGPIB_viRead(VI:Integer;var Buffer:String; var RetCount:integer):Integer;

Read the string buffer from VISA connection ‘VI'. Returns the number of chars read
in ‘RetCount’. Function result is ‘0’ when the call succeeds.

3.15.4 Write

Function EZGPIB_viWrite(Vl:Integer;Buffer:String; var RetCount:integer):Integer;

Write the string buffer to VISA connection ‘VI'. Returns the number of chars written
in ‘RetCount’. Function result is ‘O’ when the call succeeds.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 49/52

4 Software Revision History

20070330 Reception of large data blocks (screen plots) with the BusWaitForDataBlock
routine improved a lot.

20070531 Now handles an unlimited number of serial ports.
Now handles an unlimited number of telnet connections.
Can update the firmware of the Prologix adapter starting with firmware 4.2.

Can make full use of the new ++read command of the Prologix adapter,
but stays backward compatible to firmware version 3.12c.

Added EZGPIB_ConvertRemove procedure.

Added EZGPIB_FileExists function.

Added EZGPIB_LocalLockout procedure.

Renamed EZGPIB_GTL procedure to EZGPIB_GotoLocal.

Debug window now completely thread-driven.

20070821 Included functions and procedures for file input handling. Have a look at functions
starting with fileopen and also note the NthArgument function.

Completely rewritten to multi-threading.
20071224 Support for DLL based interfaces added.
20080126 Some bugs removed.
20080608 VISA compatibility added.
20080619 Some EOS related bugs removed.

20080802 Support for Prologix LAN GPIB interface built in. Device messages end detection
is set to EOS as default with <LF> as the default EOS char.

20080809 Corrected some bugs that had come in with the introduction of the LAN GPIB
interface.

20081129 Some bugs removed.

20090213 Some bugs removed. Added the part “EZGPIB Functions and Procedures” to
the manual. This part has been written by Jack Smith, KBZOA. Thank you
Jack in the name of all EZGPIB users!

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 50/52

20090531 Support for GPIB secondary addresses has been included. Read “GPIB Address
Parameter and Sub Address Support”, which has been written by David J.
Holigan, daveh@essnh.com. Thank you Dave in the name of all EZGPIB users!

EZGPIB can now be started several times, if the .EXE files are located in
different subdirectories. So one version can deal with a USB device, a second
with a LAN based device and a third with a DLL-based device.

20091107 One of the biggest improvements of EZGPIB is, that | have found a flawless way
for communication between EZGPIB and ProfiLab. ProfiLab is a German (may be
installed in English and French language too) based construction kit system for
data acquisition systems that is in many aspects comparable to LABVIEW.
However it has a much smaller footprint than LABVIEW, is a bit limited in its
capabilities against LABVIEW but costs less than 100 €!!

Learn more about ProfiLab at

http://www.abacom-online.de/uk/html/profilab-expert.html

One of the few flaws of ProfiLab is, that it does not provide GPIB
communications. That makes it the ideal partner for EZGPIB which makes GPIB
communication a snap. EZGPIB on the other hand lacks the rich set of graphic
controls and displays that ProfiLab provides. They team up!

Among other ways ProfiLab can communicate with hardware or other soft- ware
by means of an “imported DLL”. These imported DLLS appear on the working
screen as a building block having a number of inputs and a number of outputs. |
have written such a DLL for ProfiLab which can be configured to have 1 to 1000
inputs and 1 to 1000 outputs. Once the DLL is configured it can be connected to
other ProfLab components in the usual way. Nothing more needs to be obeyed
in the ProfiLab project. The counter piece to that in EZGPIB is a set of two
functions named

EZGPIB_ProflabOut(Output:Integer; Value:Double)
and
EZGPIB_Proflabln(Input:Integer): Double

which directly operate on the ProfiLab building block by means of shared
memory.

The ProfiLab directory contains the necessary DLL that should be copied to
ProfiLab’s root directory together with its INI-file. The Profilab directory also
includes a ProfiLab demo project that matches the EZGPIB’s ProfiLab.488 demo.

Revision date: 05/01/2021

mailto:daveh@essnh.com
http://www.abacom-online.de/uk/html/profilab-expert.html

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 51/52

20121204 It has been reported by some users of EZGPIB that writing data to a file can be
very time consuming with large data files, for example 20 minutes for a 23 MB
file. As it turned out the EZGPIB_FileWrite (Filename) procedure was the
bottleneck of its all since it opens the file then appends the data to the end of the
file and hereafter closes it which is not economical with large files to say the
least. Normally a snip of code that writes a data file would look something like
this:

Repeat
EZGPIB FileClearBuffer;
EZGPIB FileAddtoBuffer (Varl);
EZGPIB FileAddtoBuffer (Var2);

EZGPIB FileAddtobuffer (VarN);

EZGPIB FileWrite (Filename) ;
Until AllDataWritten // Supply condition of your own

In the new version you can use a EZGPIB_FileAddtoBuffer (#13+#10) to
generate kind of a "new line" in the buffer where you now can add the next set of
vars without being necessary to write out every line on its own. Instead you
generate a big to very big buffer and write it out completely with
EZGPIB FileWrite (Filename) oOnce.

So the new thing looks like:

EZGPIB FileClearBuffer;
Repeat
EZGPIB FileAddtoBuffer (Varl);

EZGPIB FileAddtoBuffer (Var2);

EZGPIB FileAddtobuffer (VarN);

EZGPIB FileAddtoBuffer (#13+#10);
Until AllDataAddedToBuffer // Supply condition of your own
EZGPIB FileWrite (Filename) ;

and is much faster.

Note that EZGPIB FileClearBuffer and EZGPIB FileWrite (Filename) are
called only once per buffer.

20121217 A small bug which affected the first call of EZGPIB_FileAddtoBuffer
after an EZGPIB_FileClearBuffer has been fixed.

04/01/2021 EZGPIB.EXE resources patched to initial windows size of 1024x768 and use of
bigger fonts, to better support HiRes displays and my old eyes ;-)).

Executable file renamed to EZGPIB2.EXE.

Revision date: 05/01/2021

EZGPIB2_eng

EZGPIB Manual Rev: 2.00
Page 52/52

5 Document Revision History

04/01/2021 German document created from the original document dated 12/17/2012.
Paragraph structure created and table of contents inserted.
Obituary for Uli Bangert DF6JB added.
Pictures in chapter 2.4.6 ‘File Menu Enhancements’ updated.
Function and procedure descriptions merged into one list.
Chapter 2.2.2 ‘Debugging Scripts’ added.
Description of procedure EZGPIB_BusAddressDevice in chapter 3.1.2
corrected, added some hints to switch controller into ‘device mode’.

Version Date Changes by
1.nn 12/17/2012 | Last version edited by OM Ulrich Bangert DF6JB
2.00 04/01/2021 | Miscellaneous editorial changes and updates KaKa

Revision date: 05/01/2021

